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Abstract

Astrocytes, a subtype of glial cells, come in variety of forms and functions. However,
overarching role of these cell is in the homeostasis of the brain, be that regulation of ions,
neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis
represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in
most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along
with pathological condition that arise from dysfunction of these glial cells. Classification of
astrocytes is presented with the emphasis on evolutionary trails, morphological appearance
and numerical preponderance. We note that, even though astrocytes from a variety of
mammalian species share some common features, human astrocytes appear to be the largest
and most complex of all astrocytes studied thus far. It is then an imperative to develop
humanized models to study the role of astrocytes in brain pathologies, which is perhaps
most abundantly clear in the case of glioblastoma multiforme.

INTRODUCTION: THE CONCEPT OF
HOMEOSTATIC NEUROGLIA

The complexity of human brain is remarkable: more than 200 bil-
lions (ie, 2 3 1011) of neural cells (neurones and neuroglia) are
packed within a limited volume (average human brain occupies
1200–1400 cm3). These neural cells form complex networks, con-
nected with 15–20 trillions of chemical and electrical synapses that
provide for this organ computing power. Assuming the memory
capacity of a single chemical synapse of � 5 bits, the total memory
capacity of the human brain exceeds 1 petabyte (21). The logistics
support underlying this highly complex analytical machine (which
uses multiple information processing algorithms being thus funda-
mentally different from binary-oriented artificial computing) is pro-
vided by a specific class of cells known as neuroglia.

Neuroglia, which comprise cells of neural (astrocytes, oligoden-
drocytes and NG2 glia and all peripheral glia) and non-neural
(microglia) origins, represent the homeostatic and defensive arm of
the nervous system (110, 260). Glial cells provide homeostatic con-
trol on all levels of organization of the CNS (Table 1) from molecu-
lar (eg, regulation of ion and neurotransmitter turnover) to network
(eg, regulation, of synaptic connectivity and axonal myelination)
and systemic (chemosensing and regulation of energy balance).

Astrocytes, which are distributed in both white and gray matters of
the brain and the spinal cord, are main homeostatic cells (174,
263); oligodendrocytes are responsible for axonal myelination and
axonal homeostatic support throughout the brain, being thus central
elements of the brain connectome (73); NG-2 glia contribute to
CNS homeostasis, and provide a pool of oligodendroglial progeni-
tor cells involved in adult (re)myelination (158, 208). All these
macroglial cells are responsible for CNS protection and defence
through a complex and evolutionary conserved programme of reac-
tive astrogliosis, Wallerian degeneration and activation of NG2 glia
(178, 203, 260, 266). Microglial cells [which enter the brain as foe-
tal macrophages—(80)] acquire a specific morphological pheno-
type (small cell bodies with highly motile processes) and express
an extended complement of receptors characteristic for both neural
and immune cells. Combination of motile processes and multiple
receptors are instrumental for constant surveillance of the nervous
tissue for the signs of damage (108). Microglial cells shape neuro-
nal networks through synaptic stripping and phagocytosis of redun-
dant and apoptotic neurones during development (109, 252).
Insults to the brain trigger microglial activation, which produces
multiple and often disease-specific phenotypes, while overactiva-
tion of microglia may assume neurotoxic proportion and exacerbate
neuropathology (92, 108).
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Table 1. Physiological functions of astroglia.

Function Molecular pathways Reference

Ion homeostasis

K1 buffering and homeostasis Na1-K1 pump, NKA

Na1-K1-Cl– co-transporter 1 NKCC1/SLC12A2

(operational at high K1 loads)

Inward rectifier K1 channels Kir4.1

Connexins Cx43, Cx30

(41, 51, 115, 122, 132,

164, 171, 172, 192, 225, 254)

Cl– homeostasis GABAA receptors

Anion channels, ClC-2,

Volume-regulated anion channels VRAC/SWELL1

Best1 Cl– channels

Na1-K1-Cl– co-transporter 1 NKCC1/SLC12A2

(24, 65, 107, 173, 230)

H1 homoeostasis and control

of extracellular pH

Na1-H1 exchanger NHE1/SLC9A1

Na1-HCO–
3 transporter NBCe1/SLC4A4

Plasmalemmal V-type H1 pump

(40, 54, 84, 89)

Na1, Ca21 homoeostasis Plasmalemmal Ca21 pump PMCA

Na1-Ca21 exchanger NCX1/SLC8A1, NCX2/SLC8A2

and NCX3/SLC8A3

(112, 114, 206, 265, 268)

Neurotransmitter homoeostasis

Glutamate Na1-dependent glutamate transporters EAAT1/

SLC1A6 and EAAT2/SLC1A2

Cystine/glutamate antiporter Sxc– composed of

xCT/SCL7A11 and 4F2hc/SLC3A2 proteins

(113, 257, 293)

(6, 151)

GABA Na1-dependent GABA transporter GAT3/SLC6A11 (148, 223)

Glutamate/GABA-glutamine shuttle Glutamine synthetase GS

Na1-dependent glutamine transporters

(96, 163, 205)

Glycine Na1-dependent glycine transporters GlyT1/SLC6A9 (69, 100, 288)

Monoamines Norepinephrine transporter NET/SLC6A2 (which

transports both noradrenaline and dopamine)

Monoamine oxidase B MAO-B

(221, 247)

(95, 212)

Adenosine Na1-dependent concentrative nucleoside transport-

ers CNT2/SLC28A2 and CNT3/SLC28A3

Adenosine kinase ADK

(127, 183)

(27, 242)

Metabolic support

Uptake of glucose, synthesis of glycogen Glucose transporter (5)

Aerobic glycolysis, shuttling of lactate to

neurones

Monocarboxylate transporters 1 and 4 (MCT1/

SLC16A1, MCT4/SLC16A3

(87, 180, 181)

Network homeostasis and synaptic transmission

Synaptogenesis Cholesterol, thrombospondins, hevin, secreted pro-

tein acidic and rich in cysteine SPARC

(67, 119, 139, 187)

Synaptic maturation Activity-dependent neurotrophic factor, tumor

necrosis factor a (TNFa), cholesterol, astroglia-

derived glypicans 4 and 6

(7, 67, 187)

Synaptic extinction Complement factor C1q (42, 214)

Organ homeostasis

Regulation of the formation and

permeability of blood-brain and

CSF-brain barriers

(1, 2)

Formation of glial-vascular interface

and regulation of microcirculation

Epoxyeicosatrienoic acids EETs,

20-hydroxyeicosatetraenoic acid 20-HETE, prosta-

glandin E2 PGE2,

Ca21-dependent K channels KCa3.1

(18, 74, 101, 144, 153, 246, 294)

Functional operation of the glymphatic

system

Water channel aquaporin-4 AQP4 (102, 103, 154, 156)

Gliocrine system, astrocytes act as

secretory cells of the brain

Neurotransmitters, neuromodulators, neurohor-

mones, cytokines, neurotrophic factors

(259, 262, 296)

Systemic homeostasis

Central chemoception of plasma Na1

concentration

Na1-activated Nax channels (159, 160, 229, 277)

Astroglia in health and disease Verkhratsky et al

630 Brain Pathology 27 (2017) 629–644

VC 2017 International Society of Neuropathology



EVOLUTION OF GLIA ACCOMPANIES
INCREASING COMPLEXITY OF THE
BRAIN

Evolutionary emergence of the supportive neural cells coincided
with the centralization of the nervous system and appearance of neu-
ronal conglomerates in the form of ganglia or neuronal rings. The
ancient forms of neuroglia, defined as cells covering neuronal ele-
ments have been characterized in round worms and in the Acoela
worms. The nervous system of the round worm C. elegans com-
prises 302 neurones and 50 supportive cells of the ectodermal origin
(which can be classified as neuroglia) and six GLR cells originating
from mesoderm, these later being interconnected (through gap junc-
tions) to both neurones and muscle cells (168). The majority (46) of
glial cell of C. elegans are forming (together with neuronal termi-
nals) the sensory organs of the worm, known as sensilla. Four
ensheathing glial cells localized in the head of the C. elegans extend
velate processes covering neurones in the neural ring of the animal,
and thus can be defined as proto-astrocytes (185, 240). The support-
ive cells extending multiple processes into the neuropil were also
identified in the Acoela worms (25); in platyhelminthes (polyclads
and triclads) supportive cells have been found in the nerve cord (82).

Further evolution brought up a substantial diversification of glia.
The ganglionic nervous system of the medicinal leech contains sev-
eral types of specialized glia, represented by giant glial cells
responsible for homeostatic control over the neuropil, by packet
glial cells which enwrap neuronal cell bodies and by connective
glial cells that cover and support axons (55). The giant glial cells
express multiple ionotropic and metabotropic neurotransmitter
receptors and ion channels (55, 152). Neuronal activity and behav-
ioral patterns trigger glial depolarization and cytosolic Ca21 signal-
ing (58, 130). Packet glia regulate K1 homeostasis around
neuronal somata (211), whereas giant glial cells control ion homeo-
stasis in the neuropil, being particularly important for regulation of
pH (by plasmalemmal Na1-HCO–

3 co-transporter, Na1-H1 and
Cl–-HCO–

3 exchangers). Furthermore giant glial cells remove
extracellular glutamate and choline through dedicated Na1-depend-
ent plasmalemmal transporters (56, 57, 98, 283).

Even higher level of diversification characterizes neuroglia in
the arthropods, and particularly in the insects. In Drosophila, glial
cells account for �10% of all cells in the CNS and are represented
by several major classes. These include: (i) wrapping glia of the
peripheral nervous system; (ii) surface glia (comprising perineural
and subperineural cells), which make the brain-hemolymph barrier;

(iii) cortex glia that cover neuronal cells bodies in the CNS; (iv)
neuropil glia (ensheathing and astrocyte-like glia) that cover CNS
axons and synapses; and (v) tract glial cells, which cover axonal
tracts connecting different neuropils in the CNS (8, 64, 76, 90,
117). The major types of glial cells are further subdivided on a
basis of their morphology and function; for example, the glia of the
lamina (neuropil) of the optic lobe is classified into fenestrated glia,
pseudocartridge glia, distal and proximal satellite glia, epithelial
glia and marginal glia (38, 64, 250). Glial cells in insects are
responsible for homeostatic functions, such as regulation of ionic
balance in the CNS fluids and regulating clearance, recycling and
metabolism of neurotransmitters (29, 140). In particular neuropil
glial cells in Drosophila express glutamate receptors (133), excita-
tory amino acid transporters dEAAT1and dEAAT2, as well as glu-
tamine synthetase generating glutamine the glutamate-glutamine
cycle, the latter responsible for transport and recycling of glutamate
between neurones and glia (53, 106).

In early vertebrates, the CNS parenchymal glia is replaced by
the radial glia, which is associated with an emergence of layer orga-
nization of the brain. In the early chordates and in the low verte-
brates (eg, in sea cucumber, star fishes, chondrichthian fishes and
teleosts) the radial glia is the only type of parenchymal glia respon-
sible for both neurogenesis and homeostatic control over the nerv-
ous tissue (16, 32, 136, 137). Increase in the thickness of the brain
is accompanied with the emergence of the parenchymal astrocytes,
which cover an increased homeostatic demand associated with the
brain size (196, 280). In higher vertebrates radial glia generally dis-
appears after birth, with some types of radial astroglial remaining in
the cerebellum (Bergmann glia), in the retina (M€uller glia) and in
the hypothalamus (tanycytes).

ASTROGLIA: DEFINITION AND
APPEARANCE

The name of astrocyte was invented by Michael (Mih�aly) von
Lenhoss�ek (125) to define a subclass of parenchymal glia;
Lenhoss�ek also proposed to call all neuroglial cells of the gray mat-
ter spongiocytes. Astroglia are defined as a highly heterogeneous
class of neural cells of ectodermal, neuroepithelial origin that sus-
tain homeostasis and provides for defence of the central nervous
system (260). Astroglia are further sub-classified into protoplasmic
astrocytes of the gray matter, fibrous astrocytes of the white matter,
velate astrocytes of the cerebellum, radial astrocytes (represented
by M€uller retinal glial cells, cerebellar Bergmann glial cells and

Table 1. Continued.

Function Molecular pathways Reference

Central chemoreception of oxygen,

pH and CO2

Oxygen sensor associated with mitochondria in

cortical astrocytes

pH sensor in brain stem astrocytes

Na1-Ca21 exchanger. Kir4.1 K1 channels

(12, 83, 253, 279)

Regulation of sleep Astrocytes are linked to the sleep homeostat

through an elevation of brain adenosine content

in the wake state. Astrocytes may also regulate

sleep through dynamic control over ion composi-

tion of the interstitium

(60, 86, 188, 248)
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tanycytes of the hypothalamus and parts of the spinal cord), pitui-
cytes in the neuro-hypophysis, perivascular and marginal astro-
cytes, Gomori-positive astrocytes (rich in iron and identified in the
arcuate nucleus of the hypothalamus and in the hippocampus) and
surface-associated astrocytes. In addition, astroglia include several
types of cells that line the ventricles or the subretinal space repre-
sented by ependymocytes, choroid plexus cells and retinal pigment
epithelial cells The brains of the high primates contain specific
interlaminar, polarized and varicose projection astrocytes (260).

Identification and visualization of astrocytes in the nervous tissue
relies on the morphological criteria and expression of specific
markers. The latter include glial fibrillary acidic protein (GFAP),
vimentin, protein S100, plasmalemmal glutamate transporters
EAAT-1 and EAAT-2 (known in rodents as GLAST and GLT-1,
respectively), glutamate synthetase, inward rectifying Kir4.1 chan-
nels, water channels aquaporin 4 (AQP4), connexins Cx30 and
Cx43, aldehyde dehydrogenase 1 family member L1 (ALDH1L1)
foliate metabolism enzyme, fructose-1, 6-bisphosphate aldolase (or
aldolase C), and transcription factor SOX9 (13, 14, 35, 36, 154,
161, 167, 176, 213, 218, 244, 275). None of these markers, how-
ever, labels all astrocytes throughout the brain.

The most commonly used immunostaining with antibodies
against GFAP visualizes only a sub-population of astrocytes with a
substantial regional and developmental heterogeneity. In the juve-
nile hippocampus anti-GFAP staining reveals � 80% of all astro-
glia (35, 167), whereas in other regions of the healthy brain only a
minority (10–20%) of astrocytes are GFAP-positive (111, 213,
276). In addition GFAP staining reveals only the main processes of
astrocytes, with no labeling of perisynaptic and peripheral proc-
esses or small endfeet, thus labeling only �15% of an individual
astrocyte (195, 231). Immunostaining with antibodies against pro-
tein S100B labels, as a rule, 2–3 times more astroglial compart-
ments compared with GFAP labeling (167, 213). At the same time
immunoreactivity for S100B is detected in other CNS cells includ-
ing oligodendrocytes, ependymal cells, choroid plexus epithelium,
vascular endothelial cells, and even in some neurones (199, 237).
The antibodies against EAAT-1 (the most widespread astroglial
glutamate transporter) stain radial glia, fibrous and protoplasmic
astrocytes, cerebellar Bergmann glia, retinal M€uller glia, radial
stem glia in the dentate gyrus and subventricular zone in develop-
ing and adult CNS (20, 228, 281). Some splice variants of EAAT-
1, however, were found in some neurones, oligodendrocytes and
ependymal cells (217). Of note, EAATs expression show substan-
tial inter-species differences (281). Immunoreactivity for glutamine
synthetase (GS) was detected in fibrous and protoplasmic astro-
cytes, in radial glia, Bergmann glia, retinal M€uller glia, tanycytes
and ependymal cells; furthermore this staining labels many GFAP-
negative astrocytes. For example, in the mouse entorhinal cortex,
78% of all labeled glial cells were GS-positive, 12% GFAP-
positive and only 10% were positive for both GS and GFAP (286).
Similarly, in the hippocampus double staining showed that only
60% of cells immunoreactive for GS were positive for GFAP
(276). In addition, staining with antibodies against GS, which is
present in the astrocyte cytoplasm, visualizes the complete cellular
profile.

Immunolabeling with the water channel AQP4 antibody reveals
mainly astroglial endfeet where these channels are concentrated
(154), although in human astrocytes this polarization many not be
as strict as in mice (66, 189). Antibodies against connexin Cx30

selectively visualize gray matter astrocytes (155), whereas staining
against Cx43 does not discriminate between fibrous and protoplas-
mic astroglia. Polyclonal antibodies against ALDH1L1 stain both
GFAP positive and GFAP negative astroglial cells in the cortex; at
the cellular level ALDH1L1 - staining allows visualization of fine
processes (36). ALDH1L1 is, however, developmentally regulated
and it is also expressed in some oligodendrocytes (285). Astrocytes
in mouse and human brain are enriched with SOX9, a transcription
factor. Immunostaining with specific antibodies against SOX9
exclusively stain astroglial nuclei, and hence are used for fluores-
cence activated cell sorting of astrocytes and for isotopic fractiona-
tion (244). Distal and perisynaptic astroglial processes can also be
labeled with antibodies against MLC1 protein (28).

For labeling astroglia in the in vivo brain, the gliophilic fluores-
cent probe sulforhodamine 101 and its analogues sulphorhodamine
B or G are frequently used (157). This positively charged molecule
is selectively taken up by astrocytes and could be delivered either
by injection into the brain tissue (157) or even by intravenous injec-
tion (15). There is some regional selectivity in rhodamine probes
accumulation; it is readily taken up by hippocampal astroglial but
does not stain astrocytes in the ventrolateral medulla (220). Rhoda-
mine deployment, however, has some adverse effects on neuronal
excitability; rhodamine injections induce seizures in situ and in
vivo (105, 193).

ASTROGLIA: THE NUMBERS

There is still a degree of confusion about the total numbers of neu-
rones and glia, and numerical distributions of different glial cell
types in the CNS of mammals. The glia to neurones ratio (GNR)
varies considerably between species. The nervous system of inver-
tebrates contains relatively few neuroglial cells, with the GNR in
leech, for example, being � 0.025; and in Drosophila �0.1. At the
same time the buccal ganglia of the great ramshorn snail Planorbis
corneus contains 298 neurones and 391 glial cells [GNR � 1.3
(184)].

In vertebrates the GNR roughly increases proportionally to an
increase in the size of the brain; for example, in the cortex the glia
to neurone ratio is about 0.3–0.4 in rodents and rabbit, � 1.1 in cat;
�1.2 in horse, 0.5–1.0 in rhesus monkey, 2.2 in G€ottingen minipig,
�1.5–1.7 in humans, and as high as 4–8 in elephants and the fin
whale. Technique of isotopic fractionation developed in recent dec-
ade shows that total numbers of neurones and glia in the human
brain are similar, although with substantial variations between dif-
ferent brain regions (19, 93). The ratio between non-neuronal cells
and neurones varied between 11:1 for the brain stem, 3.7:1 in corti-
cal regions including the corpus callosum and 0.2:1 in the cerebel-
lum (19, 93, 126, 274). The glia to neurone ratio (excluding
microglia) in the gray matter of the human cortex was estimated at
1.65 (227). The total number of astrocytes in rodents does not
exceed 10–20% of total cells in the brain (244). Based on morpho-
logical criteria, in the human neocortex astrocytes accounted for �
20%–40%, oligodendrocytes for 50%–75% and microglia for 5%–
10% of the total glial population (26, 182). Stereological studies on
the cortex of the rhesus monkey, however, demonstrated both
developmental and regional differences in numerical distribution of
glial cells. In area 17 of young monkeys, for example, astrocytes
accounted for 40% of total glia, oligodendrocytes for 53% and

Astroglia in health and disease Verkhratsky et al

632 Brain Pathology 27 (2017) 629–644

VC 2017 International Society of Neuropathology



microglia for �7%. In cortical layers 1–3 astrocytes were at 57%,
oligodendrocytes at 36% and microglia at 7%, whereas in the layer
4 (which has higher degree of myelination) 30% of glia belong to
astrocytes, 62% to oligodendroglia and remaining 8% for microglia
(186).

IDIOSYNCRATIC HUMAN ASTROGLIA

Astrocytes in humans and higher primates differ very much from
other mammals (studied so far) in their size and morphological
complexity; furthermore, several types of astroglia exist only in the
brains of hominids. The protoplasmic astrocytes in the human gray
matter occupy � 16 times more volume and have � 10 times more
primary processes compared to the same cells in the rat brain (166).
It has been estimated that on average human protoplasmic astro-
cytes contact and integrate around 2 million of synapses residing in
their territorial domains, whereas rodent astrocytes cover �20 000–
120 000 synaptic contacts (35, 166). Human fibrous astrocytes are
similarly much larger than rodent ones [the average area of human
fibrous astrocyte domain is 180 lm2 vs. 85 lm2 in mouse (166)].

The brains of higher primates (old world monkeys and apes) and
humans contain several specific types of astrocytes. One of the
most abundant types of these cells is represented by interlaminar
astrocytes [named so by Jorge Colombo (46)]. These cells were
originally described at the end of the 19th century (11, 134, 198). In
the human brain, interlaminar astrocytes are characterized by a
small (�10 lm) spheroid cell body localized in the cortical layer I;
these cells have several short and one or two very long (up to
1 mm) processes, which penetrate through the thickness of the cor-
tex to end in the layers II to IV; terminal portions of these processes
appear as bouton- or club-like structures known as terminal masses
or end bulbs (43, 166). Incidentally in vivo injections of high KCl
concentrations increased the number of these terminal masses sug-
gesting association with K1 homeostasis (44). Often the processes
of interlaminar astrocytes contact blood vessels (236). Interlaminar
astrocytes appear in first postnatal months and they originate from
astroglial precursors and not from radial glia (45). Interlaminar
astroglia in the human tissues were reported to be labeled with anti-
bodies against CD44, a receptor for extracellular matrix molecules
(3, 236). In addition interlaminar astrocytes show high immunore-
activity for GFAP and S100B, whereas expression of plasmalem-
mal glutamate transporters and glutamine synthetase seem to be
rather low (236). Electrophysiological examination of these astro-
cytes revealed passive K1 conductance similar to other types of
astroglia; only half of interlaminar astrocytes, however, showed
coupling with other astroglial cells (236). Processes of interlaminar
astrocytes have been found to be disrupted in Down syndrome and
in Alzheimer’s disease; furthermore, the size of terminal masses
was found to be significantly increased in the latter (43).

Another type of astroglia specific for the brains of high primates
and humans is represented by polarized astrocytes. Somata of these
cells are located in the deep cortical layers close to the white matter;
polarized astrocytes have two exceptionally long (up to 1 mm in
length) processes that penetrate into superficial cortical layers (166)

The deep cortical layers also contain a population of cells dis-
playing general properties of protoplasmic astrocytes, but having
also several (1–5) very long (up to 1 mm) unbranched processes
with evenly spaced varicosities; these processes extend in all

directions through the cortex, with many of them contacting blood
vessels (166, 236). These cells were identified as “stellate inde-
pendent cells” by Cajal (37), as varicose projection astrocytes by
Oberheim et al (166) and as astrocytes with long processes by
Sosunov et al (236). Similarly to interlaminar astrocytes, these cells
can be labeled with antibodies against CD44 (236). The number of
these atypical astrocytes with long processes varied very substan-
tially between individual specimens, and they were never observed
in neonatal brains, arguably reflecting individual life-long adaptive
changes (236).

HUMAN ASTROCYTES AND COGNITIVE
CAPACITY—IS THERE A DIRECT LINK?

Highly idiosyncratic properties of human astrocytes (absent in a
less intellectually developed mammals) suggest their possible role
in information processing and intelligence. Astrocytes can be con-
sidered as integrators of neural networks, which may simultane-
ously influence millions of synaptic contacts. Direct implantation
of human foetal glial progenitors into the brains of young immuno-
suppressed mice resulted in expansion of human cells which even-
tually populated large portion of the mouse brain largely replacing
the host astrocytes (88). Further experiments demonstrated that
embryonic human glial progenitors, or glial precursors derived
from induced stem cells exhibit a growth advantage and replace the
host glia after grafting (81, 282). Animals carrying human astro-
cytes had improved memory and outperform the wild type animals
in several cognitive tests including novel object recognition or audi-
tory fear conditioning (88). Electrophysiological investigations also
found a reduced threshold for generation of long-term potentiation
in mice living with human astroglia (88). The mechanisms for
increased cognitive performance, however, remain unknown; they
may reflect higher homeostatic capacity of human astrocytes, dif-
ferent coverage of synapses by astrocytic processes (295) or else
increased plasticity stimulated by the release of various factors
from human glia.

HUMAN GLIOMA GROWN IN MICE

There are � 25 000 new glioma cases recorded annually in the
United States (http://www.abta.org/). The most aggressive glioma
type is glioblastoma multiforme (GBM; WHO grade IV). The main
obstacle to the successful treatment of GBM is its reappearance fol-
lowing surgical removal/radiation therapy in the near vicinity (1–
2 cm) of the original locus or, less commonly, by the formation of
satellite loci in distant parts of the brain. Both events indicate the
invasive nature of this neoplasm (200, 289). Since 1928, it has
been recognized that glioma cells have spread throughout the brain
by the time patients are symptomatic (52). Yet, GBM extracranial
metastases are very rare (0.44%) (200) and multifocal gliomas rep-
resent only 0.5%–20% of clinical cases (175). It is the infiltration
of GBM cells from a single solid tumor mass into adjacent brain
tissue that fits the most common (80%–99.5%) clinical presentation
of GBM (216). This migration/invasion needs to be studied as it
may represent a fertile ground for novel therapeutic approaches.
The most relevant model one can use to study gliomas has been
introduced as human patient-derived xenoline (PDX) tumors (78).
Here, patient biopsy samples of GBMs are propagated in the brains

Verkhratsky et al Astroglia in health and disease

Brain Pathology 27 (2017) 629–644

VC 2017 International Society of Neuropathology

633

http://www.abta.org/


Table 2. Astrocytopathology.

Nosological forms Astrocytopathy References

Leucodystrophies

Alexander disease Sporadic mutations of glial fibrillary acidic protein (GFAP) with

pathological remodeling of astrocytes and severe white

matter lesions. Decrease in astroglial glutamate uptake

(30, 143, 271)

Megalencephalic leukoencephalopathy

with subcortical cysts (MLC)

The disease is caused by mutations in the MLC1 gene

often in combination with mutations in the hepatic and

glial cell adhesion molecule gene (Hepacam/Glialcam).

The MLC1 protein is predominantly expressed in astro-

cytic end-feet. MLC1 is a part of membrane signaling

complex which includes Na1-K1- pump, inward rectifier

Kir4.1 channels, aquaporin4 (AQP4), caveolin-1 and

TRPV4 channels. The mechanism possibly involves a

loss of astroglial control over fluid homoeostasis and

cell volume.

(28, 63, 120, 121, 124, 131)

Vanishing white matter syndrome (VWM) or

childhood ataxia with central nervous system

hypomyelination (CACH)

Mutations in the eukaryotic translation initiation factor 2

(EIF-2B) gene. The disease is associated with atrophic

(dysmorphic) astrocytes, altered GFAP filaments, defi-

cient astroglial reactivity and impaired astrocytic differen-

tiation. Pathologically remodeled astrocytes secret

factors inhibiting oligodendroglial maturation.

(31, 59, 61, 256)

Demyelinating diseases

Neuromyelitis Optica (NMO) Autoantibodies-induced loss of AQP4 and GFAP, astroglial

atrophy and demise.

(97, 194)

Bal�o’s disease Down-regulation of expression of Cx43 and AQP4, misloc-

alization of MLC1, astroglial hypertrophy. Loss of astro-

glial function is considered to be a primary cause for

oligodendroglial lesions and demyelination.

(135, 138)

Neurotoxic encephalopathies

Hepatic encephalopathy Pathological remodeling of astrocytes; failure of K1 and

glutamate homeostasis with ensuing excitotoxicity, path-

ological Ca21 signaling and aberrant glutamate release,

deficient operation of glutamate-glutamine shuttle

because of excessive ammonium obliterating the GS

pathway.

(4, 85, 150, 162, 165)

Heavy metal (lead, manganese mercury,

aluminum)-induced encephalopathies

Astroglial loss of function: accumulation of heavy metal

into astrocytes instigated significant down regulation of

plasmalemmal glutamate transporters with ensuing

excitotoxicity.

(241, 243, 269, 287)

Wilson disease Pathological remodeling of astrocytes; failure of astroglial

regulation of copper homoeostasis.

(62, 215, 249)

Psychiatric diseases

Wernicke-Korsakoff encephalopathy Loss of astroglial function: substantial (up to 80%) down-

regulation of astroglial plasmalemmal glutamate trans-

porters with ensuing glutamate excitotoxicity.

(91)

Major depressive disorder Reduction in astroglial densities in cortex and amygdala,

reduced expression of GFAP, decrease in expression of

plasmalemmal glutamate transporters, connexins Cx43

and Cx30, glutamine synthetase and AQP4. Impaired

astroglial homeostatic capabilities may underlie aberrant

neurotransmission responsible for depressive

symptoms.

(47–50, 191, 209, 210)

Schizophrenia Astrodegeneration and astroglial atrophy, down-regulation

of homeostatic molecular pathways, including plasma-

lemmal glutamate transporters, AQP4, GS, thrombo-

spondins. Up-regulation of plasmalemmal cystine-

glutamate exchanger and increased production of kynur-

enic acid may further deregulate glutamatergic transmis-

sion and underlie psychotic symptoms.

(71, 190, 219, 222, 270)
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Table 2. Continued.

Nosological forms Astrocytopathy References

Addictive disorders Combination of astrodegeneration and astroglial reactivity,

impaired astroglial glutamate homoeostasis. Ablation of

astrocytes from the prelimbic area of the prefrontal cor-

tex, as well as inhibition of astroglial gap junctions

increased alcohol seeking behavior. Atrophic astrocytes

were observed in nucleus accumbens of cocaine-

addicted rats.

(17, 145–147, 197, 224, 278)

Neurodegenerative diseases

Alzheimer’s disease Astroglial atrophy at the early stages, reactive remodeling

of senile plaque associated astrocytes, reduced astro-

gliosis at the terminal stages, decreased astroglial synap-

tic coverage, loss of astroglial homeostatic support,

impairment of water transport, glutamate uptake and

glutamate-glutamine shuttle. Astrocytes associated with

senile plaques display Ca21 hyperexcitability and gener-

ate abnormal propagating intercellular Ca21 waves.

(104, 118, 129, 170, 201, 202,

204, 261, 264, 267, 273)

Ageing-related tau astrogliopathy Exclusive expression of pathological tau in astrocytes is

the sole histological symptom of several age-dependent

dementias.

(116)

Amyotrophic lateral sclerosis (ALS) Early astrodegeneration, astroglial death (through apopto-

sis) and loss glutamate clearance function underlie sub-

sequent excitotoxicity and neuronal demise. Selective

silencing of human SOD1 mutated gene in astrocytes

delays ALS progression. Neuronal death, occurring at

later stages of ALS triggers astrogliotic response.

(207, 255, 284)

Parkinson’s disease Astrocytes provide protection of dopaminergic neurones;

and astrocytes reportedly may accumulate a-synuclein.

There are some evidence for suppressed astroglial reac-

tivity, which may indicate decrease in neuroprotection.

(75, 141, 142, 235)

Huntington’s disease (HD) Progressive astroglial reactivity, although no signs of astro-

gliosis in HD mouse model. Decrease in glutamate

uptake, deficient K1 buffering, pathologically increased

release of glutamate.

(68, 70, 99, 123, 251)

Other diseases

Glioblastoma Cancer developed from astrocytes or their precursor’s (149)

Traumatic brain injury Reactive astrogliosis prevails with a gradient of phenotypes

from the lesion to the healthy tissue. Astrocytes move

toward the lesion site (anisomorphic astrogliosis) and

form the scar. Reactive astrocytes control post-lesion

regeneration.

(9, 33, 232)

Ischemia and stroke Reactive astrocytes surround the area of the infarction

core and define survival or demise of neurones in

the penumbra. Astrocytes may also convey death

signals.

(9, 245, 292)

Epilepsy Reactive astrogliosis and pathological remodeling of astro-

glia. Down-regulation of expression of Kir4.1 channels,

changes in astroglial morphology and disappearance of

gap junction coupling were found in astrocytes from hip-

pocampal specimens obtained from patients with mesial

temporal lobe epilepsy.

(22, 23, 226, 238)

Migraine Loss of function mutation of astroglia-specific a2 subunit of

Na1-K1 pump. Decrease of expression of astroglial plas-

malemmal glutamate transporters.

(39)

Autistic spectrum disorders (ASD) Pathological remodeling of astrocytes is observed in differ-

ent forms of ASD.

(291)
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of immunocompromised mice. These tumors have been genomi-
cally, transcriptomically and kinomically profiled, extensively char-
acterized and found virtually identical to human gliomas growing
in patients’ brains, unlike mouse gliomas that are significantly dif-
ferent (78).

CLASSIFICATION AND COMPLEXITY OF
ASTROGLIOPATHIES

The neurono-centric paradigm of neuropathology has been chal-
lenged recently; the leading role for neuroglia in shaping the evolu-
tion and outcome of neurological disorders begins to be
appreciated (34, 79, 174, 178, 233, 271, 272, 291). The modifica-
tions of astroglia in neuropathology are multifaceted, often disease-
specific and may undergo metamorphoses during the course of
pathological evolution (Table 2). Astroglial pathological changes
are broadly classified into: (i) astrodegeneration with astroglial atro-
phy and loss of function; (ii) pathological remodeling of astrocytes
and (iii) reactive astrogliosis (178, 261, 266). The first two groups
of non-reactive pathological transformation of astrocytes can be
summarily identified as astrocytopathies to distinguish from reac-
tive astrogliosis (72).

Astrodegeneration manifests by morphological atrophy, a
decrease in astroglial density (through increased cell death) and/or
a loss of function; it occurs in many types of neurological disorders.
In psychiatric diseases, such as schizophrenia, major depressive
disorder or Wernicke-Korsakoff encephalopathy, the number of
astrocytes is reduced, and their homeostatic pathways, such as, for
example, those associated with glutamate homeostasis, are sup-
pressed (48, 49, 146, 190, 191, 209, 270). These homeostatic fail-
ures instigate aberrant neurotransmission or excitotoxic cell death
that underlies psychotic symptoms. Morphological atrophy of
astrocytes and down-regulation of glutamate uptake are observed in
the nucleus accumbens of cocaine-addicted rats (224). Astrodegen-
eration and astroglial death are contributing to early stages of neu-
rodegenerative diseases such as amyotrophic lateral sclerosis or
Alzheimer’s disease; in the former, the impairment of astroglial
glutamate uptake causes excitotoxic death of motor neurones (207,
255), whereas in the latter, reduced astroglial coverage may explain
early synaptic deficiency and early cognitive failures (261, 264,
273). Astroglial atrophy in Alzheimer’s disease may also involve
changes in secretory vesicles trafficking (239).

Pathological remodeling represents acquisition of abnormal
properties by astroglia which drive pathology. This remodeling is
evident in several types of leukodystrophies, such as Alexander dis-
ease, megalencephalic leukoencephalopathy with subcortical cysts
or vanishing white matter syndrome, in which astrocytopathy
results in lesions to the white matter (120). In particular, in
Alexander disease astroglial expression of mutant GFAP leads to
severe leukomalacia (143). Another example of pathological
remodeling in astroglia is evident in mesial temporal lobe epilepsy,
where astrocytes change their morphology, substantially reduce
intercellular coupling and down-regulate expression of Kir4.1 chan-
nels; these changes lead to a failure in K1 homeostasis which
relates to seizure initiation (22). Pathological remodeling of astro-
glial function is also observed in specific forms of schizophrenia
associated with Toxoplasma gondii infection. The parasite targets
predominantly astroglia, which causes the aberrant increase in

production and secretion of kynurenic acid; this latter being an
endogenous inhibitor of NMDA and acetylcholine receptors
causes imbalanced neurotransmission to underlie psychotic
developments (222).

Reactive astrogliosis is triggered in many neurological disorders.
Morphologically reactive astrogliosis is characterized by up-
regulation of intermediate filaments such as GFAP and vimentin
associated with astroglial hypertrophy (177). Reactive astrogliosis
is an evolutionary conserved defensive reprogramming of astroglia
aimed at: (i) increased neuroprotection and trophic support of nerv-
ous tissue; (ii) isolation of the lesioned area; (iii) reconstruction of
the damaged blood-brain barrier; and (iv) providing for post-lesion
regeneration of brain circuits (10, 177, 178, 232). Activation of
astrocytes is a complex process which arguably produces multiple
“reactive” phenotypes, which can be distinct in different diseases.
Gene expression profiling of reactive astrocytes demonstrated sig-
nificant context-dependent (ischemia vs. endotoxin activation) dif-
ferences (290). All in all, initiation of astrogliotic programme
proceeds through a controlled continuum of changes in cellular bio-
chemistry and function that are tuned to the nature and strength of
the insult. It seems also that astrocytes within the same lesioned
area are heterogeneous in their expression of transcription factors,
inflammatory agents and signaling molecules (77, 94). Distinct
responses of astrocytes may be due to different densities of recep-
tors, such as b-adrenergic receptors, which, when activated, reduce
cytotoxic oedema by inducing astrocytic shrinkage (258).

Conceptually, reactive astrogliosis is a survivalist programme
that increases the resilience of the nervous tissue to the environ-
mental insults, while experimental inhibition of astroglial reactivity
often exacerbates neuropathology (178). For example, suppression
of astroglial reactivity increased both the size of the traumatic
lesions and neurological deficit (169). Genetic ablation of GFAP
and vimentin reduced astrogliotic response which augmented post-
traumatic synaptic loss (176) and resulted in larger ischemic
infarcts (128). In the context of neurodegeneration, inhibition of
astroglial reactivity increased the b-amyloid load in the animal
model of the Alzheimer’s disease (179). At the same time, exces-
sive or chronic activation of astrocytes may be maladaptive and
may increase the damage of the nervous tissue (177). Astroglial
reactivity dominates in acute neurological conditions, such as neu-
rotrauma, ischemic or hemorrhagic stroke or CNS infection. The
severity of the insult defines the degree of astrogliotic response,
which often results in the formation of glial scar (33, 178, 234). In
neurodegeneration astroglial reactivity arises following the appear-
ance of specific lesions, such as senile plaques or Lewy bodies, or
is triggered by neuronal death, as, for example, occurs in amyotro-
phic lateral sclerosis or in Huntington disease (178).

CONCLUDING REMARKS

Astroglia are the homoeostatic arm of the CNS, which make possi-
ble the functional activity of nervous tissue. Astrocytes of humans
and higher primates differ fundamentally from the same cells in
other mammals in their complexity, size and specific subtypes.
These differences arguably reflect on an increased complexity of
neuronal networks which require extensive support. Grafting of
human astrocytes into rodent brains increase (by yet unknown
mechanism) the functional performance of the brain. Astrocytes
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contribute to all neurological diseases. Astroglial pathological
responses are complex and may occur either as a primary patho-
genic events which instigate the neuropathology (such as
Alexander disease) or secondary responses, which nonetheless con-
tribute to evolution of neuropathology (such as astroglial reactivity
in neurotrauma or ischemia). Astroglial pathological changes are
multifaceted and can range from degeneration and atrophy to reac-
tivity and pathological remodeling. These different forms of astro-
gliopathology may occur simultaneously or sequentially following
different stages of neuropathology. Regrettably, studies of neuro-
logical diseases performed on animal models, most likely do not
reveal pathology of human astroglia, and hence urgent need exists
in developing “humanized” experimental preparations that may
recapitulate astrogliopathy of the human brain.
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